Learning hybrid neuro-fuzzy classi(er models from data: to combine or not to combine?
نویسنده
چکیده
To combine or not to combine? This very important question is examined in this paper in the context of a hybrid neuro-fuzzy pattern classi(er design process. A general fuzzy min–max neural network with its basic learning procedure is used within (ve di3erent algorithm-independent learning schemes. Various versions of cross-validation and resampling techniques, leading to generation of a single classi(er or a multiple classi(er system, are scrutinised and compared. The classi(cation performance on unseen data, commonly used as a criterion for comparing di3erent competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classi(er generation schemes. These include: the ability to estimate the true classi(cation error rate, the classi(er transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classi(er or a combination of a number of component classi(ers within a multiple classi(er system. c © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine?
To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, r...
متن کاملImproving Naive Bayes Classiiers Using Neuro-fuzzy Learning 1
Naive Bayes classi ers are a well-known and powerful type of classi ers that can easily be induced from a dataset of sample cases. However, the strong conditional independence and distribution assumptions underlying them can sometimes lead to poor classi cation performance. Another prominent type of classi ers are neuro-fuzzy classi cation systems, which derive (fuzzy) classi ers from data usin...
متن کاملSome Approaches to Improve the Interpretability of Neuro-Fuzzy Classi ers
Neuro-fuzzy classi cation systems make it possible to obtain a suitable fuzzy classi er by learning from data. Nevertheless, in some cases the derived rule base is hard to interpret. In this paper we discuss some approaches to improve the interpretability of neuro-fuzzy classi cation systems. We present modi ed learning strategies to derive fuzzy classi cation rules from data, and some methods ...
متن کاملHierarchical Neuro-Fuzzy Systems Part I
Neuro-fuzzy [Jang,1997][Abraham,2005] are hybrid systems that combine the learning capacity of neural nets [Haykin,1999] with the linguistic interpretation of fuzzy inference systems [Ross,2004]. These systems have been evaluated quite intensively in machine learning tasks. This is mainly due to a number of factors: the applicability of learning algorithms developed for neural nets; the possibi...
متن کاملDistributed Learning on Very Large Data Sets
One approach to learning from intractably large data sets is to utilize all the training data by learning models on tractably sized subsets of the data. The subsets of data may be disjoint or partially overlapping. The individual learned models may be combined into a single model or a voting approach may be used to combine the classi cations of a set of models. An approach to learning models in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004